High Performance Asphalt Intersections — Fact or Fiction?

Trenton M. Clark, P.E.
Director of Engineering
Virginia Asphalt Association

Presentation Overview

- Intersection Design Considerations
- New Pavements
- Existing Pavements
- Examples of High Performance Intersections

Intersection Considerations

Slow moving, heavy trucks

Intersection Considerations

Select appropriate materials

Intersection Considerations

Braking Forces

Impact of Truck Loading and Braking on Flexible

Pavements

"Impacts of Wide-Based Tires on Pavement Performance" Webinar – Sept. 10, 2013

New Intersection Pavement Designs

- Static loads vs. Dynamic loads (is thickness adequate?)
- Fatigue resistant base layer
- Rutting resistant intermediate and surface layers

New Intersection Cross Section

Existing Intersection Pavements

- Are there existing distresses?
- How thick is the pavement?
- What is the condition/bonding of the existing layers?
- How thick would a new pavement be?

Types of Asphalt Rutting

- Rutting
 - Subgrade, sub-base deformation (mechanical)
 - Asphalt layer(s) compaction/consolidation (densification)

Types of Asphalt Rutting

Original pavement profile

- Rutting
 - Asphalt layer(s) plastic/shear flow

- Rutting
 - Asphalt layer(s) plastic/shear flow

Shoving and Slipping

Shoving and Slipping

First, determine the cause of the distress

- First, determine the cause of the distress
 - Surface mix

- First, determine the cause of the distress
 - Surface mix
 - Underlying layers
 - Inadequate structure

- First, determine the cause of the distress
 - Surface mix
 - Underlying layers
 - Inadequate structure
 - Loss of bonding (particularly near the surface)

- Second, develop a treatment approach
 - How deep to mill (covering existing rutted or cracked surfaces makes the problem thicker)
 - Determine the length of the project
 - Select the proper AC mixture(s) and binder(s)
 - Consider lift thickness (SM-9.5, SM-12.5 or SMA)
 - Consider number of trucks (PG 70-22 or PG 76-22)

Can High Performance Asphalt Intersections be Built?

- Three case studies
 - Illinois
 - Kentucky
 - Maryland

Intersection Projects - Illinois

- Termed "The World's Strongest Intersection"
- Background
 - Located on a road serving world's largest limestone quarry
 - In 2010, producing 50,000 tons of aggregate per day
 - 1,200 loaded trucks per day
 - Flexible pavement that had been rehabed numerous times

Intersection Projects - Illinois

- Solution
 - New approach tried in 1998
 - Cores showed deformation to a depth of six inches
 - Pavement was milled and replaced with a SMA intermediate layer and SMA surface layer using PG 76-22
 - As of 2010, almost 10 Million ESALs and virtually no maintenance

2013 Google Earth Image of Intersection

Intersection Projects - Kentucky

Background

- Intersections of US 27 and KY 80 with Cumberland Parkway required constant maintenance
- KTC initiated a competition between each industry to repair a intersection
- Asphalt chose SMA to replace the surface

Outcome

- By 2010, the SMA intersection was still in service
- By 2007, the PCC intersection had been removed and replaced with SMA

Intersection Projects - Maryland

- Background
 - Evaluation started in 1994
 - Rutting Intersections on US 40 near Elkton, MD
 - Each industry challenged to design a fix
 - Existing pavement was 8" AC on PCC slab
- Solution
 - Asphalt industry recommended removal of entire AC layer based on cores and lab results
 - New AC layers utilized PG 76-22 with SBS; total depth was 8"
 - PCC industry decided to mill 6" and replace with 6" whitetopping

Intersection Projects - Maryland

Rt. 40 & Rt. 213 - Md Intersection Challenge Superpave shows proven durability. No maintenance since 1994.

PCC Intersection Replaced with AC

Rt. 40 & Landing Rd. - Md Intersection Challenge Superpave shows proven durability. No maintenance since 2000.

FACT or FICTION?

- Definitely a FACT
- Things to Keep In Mind
 - Slow and stopped loads are different than moving
 - Milling removes deteriorated layers and improves bonding
 - Mainline AC mixes may not work at intersections
 - If SUPERPAVE mixes being used, consider changing the binder near intersections
 - If SMA being used, ensure adequate quantity for cost purposes

Questions?

